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Summary. A fundamental approach to calculate the diffusion of ions through 
membranes is introduced. The membran eis considered as a heterogeneous structure 
with molecules that can have a selective affinity for a certain class of diffusing ions. 
To diffuse through a membrane an ion must become associated with, or dissolved into, 
at least one component of that membrane. Diffusion is produced by thermal jumps 
from one molecular site to another. It is assumed that the electric field can change the 
binding properties between ions and membrane molecules. The kinetics of the conduct- 
ances are calculated from the chemical kinetic theory. The calculations are compared 
to the squid axon data and the unknown parameters are adjusted to fit the data curves. 
The results are very satisfactory. The calculated activation energies correspond to the 
measured Q10 in the squid axon. The calculated and measured action potentials are quite 
similar. 

Biological membranes  appear  to be exceedingly complex  and non-  

homogeneous .  Their  exact composi t ion  and structure is not  known  and 

there is evidence that  intricate differences exist among  their various types. 

It  will be assumed that  the membranes  are made  up of proteins and  lipids. 

Proteins are present  at the surface as well as inside the membranes .  Some 

proteins are quite specific with respect to their  affinities to specific ions;  

they ma y  serve as channels for  conduc t ion  in biological  membranes .  The 

presence of macromolecules  with special propert ies  can give the m em b ran e  

very complex  and  selective diffusion propert ies.  

We shall consider  the case of an infinite two-dimensional  membrane  

separat ing two aqueous  phases and having molecular  groups  am o n g  which 

some have a special affinity fo r  the diffusing species. Diffusion would 

proceed  by jumps  f rom one site to another .  We shall calculate the mobil i ty  
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and the concentration of diffusing species in the membrane. The general 
expressions thus obtained will be compared with the observed voltage- 
current relationships in the squid axon. 

Ionic Diffusion in a Lattice 

The basic equation to describe ionic diffusion in liquids and solids is 
the well known Nernst-Planck electrodiffusion equation 

where C represents the concentration of diffusing ions, U their mobility, 
dl~/dx the chemical potential, d~p/dx the electrical potential, z the valence 
and F the Faraday constant. 

The theory of lattice diffusion in solid state physics and in the physics 
of liquids has been well developed by Jost (1952), Frenkel (1955) and 
Shewmon (1963) to name a few. Because of their thermal energy, atoms are 
always in movement in their lattice sites with a distribution of velocities. 
There is a fraction that have sufficient energy to overcome the lattice energy 
barrier and move to the surface of the crystal or alternatively into an 
interstitial site or into a lattice vacancy. Thermal diffusion and ionic flow 
in response to external force fields is a sequence of atomic jumps from 
filled lattice sites to vacant ones. Although we realize that the molecular 
structure of cell membranes is heterogenous and anisotropic we shall use 
expressions from statistical mechanics developed for homogenous isotropic 
crystals. In these, the atom trapped in a lattice site must overcome the free 
energy barrier of the lattice, AFd, to jump to another site. With the frequency 
of lattice vibrations v and the distance d between vacancies it is possible to 
calculate the mobility (Jost, 1952): 

j d2v e_~Fa/RT 
= - R T  (2) 

AFd=AEd- TASa. 

ASd is the entropy difference and AEd is the barrier energy. We realize that 
Aid could be different at the interface and inside the membrane; the largest 
value of AF. should be used to calculate the mobility. AEa can be determined 
by appropriate temperature measurements. 
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Eq. (1) is an approximation of a more general expression calculated 
with the lattice diffusion theory 

[d# 2RT . .  ( z  Fd d~) ]  
J=CU [--d~-x +----d---slntl 2 RT -~x " (3) 

If d~O/dx <RT/z Fd, Eq. (3) is reduced to Eq. (1). 

Interaction of Ions with Membrane Molecules 

To apply the above theory to describe ionic diffusion in membranes 
additional specifications must be introduced. We must take into account 
that ions are present in two phases and that their concentrations in each 
phase can be quite different. The parameter C in Eqs. (1) and (3) represents 
the concentration of ions in the membrane phase. Since the value of C is 
not easily measured experimentally, some reasonable formulation must be 
introduced to calculate it from the known concentrations in the water phase. 

We know that the solubility of ions in nonpolar lipid phases of the 
membrane is exceedingly low. We thus assume that among the non-lipid 
components there are channel molecules or molecular groups M. These 
may be distinguished by their affinity for diffusing ions Q. The molecule M 
can interact with Q, either in a solvation process or by forming a chemical 
bond with it. 

This interaction between Q and M could involve many steps if M is a 
large molecule. It is possible that many ions have to interact with M before 
a diffusing channel is formed. The general stochiometric equations will be 
the following: 

QW+M=Q1M+W, 

QW+QxM=Q2M+ W (4) 

QW+Q,,-2M=Q,,-~M+Q, 

QW+Q,_~M=Q,,M+W. (5) 

Steady state concentrations are given by 

COA~" Cw 

K , -  C~ C-~w . 
CO ~- 1M COW 

(6) 
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K~ ... 32. are the equilibrium constants. 

K i = e  -ave'roT i=1,2 .... n. (7) 

AFc, is the free energy difference between the two states of ions Q. Since 
the quantity of M is limited, it is necessary to introduce its total concentra- 
tion, CMT 

CUT = C M Jr- CQ, M -t- CQ2 M "~"" CQn M . (8) 

With the system of Eqs. (6) and (8), the value of Ca, M is calculated: 

Ca.M -- CMT (9) 
_ _ .  (Cw  (c. y 

1+ K21 CQ, Cw K2, KiJ, \-U Qw ! +'" K2' K2J  ... K?' Caw ! 

It is important to note that the equilibrium constants, K~, 322 ... K, are 
probably all different from each other. If M is a large molecule, there can 
be many binding sites and each can have a different binding constant. The 
molecules M may also deform as they accept Q. The possibility of allosteric 
changes in membranes has been postulated by several authors, particularly 
by Blumenthal, Changeux and Lefever (1970). Our treatment is not in 
disagreement with such models. It is possible that many types of ions Q 
can compete for the same molecule M. The framework proposed here to 
evaluate the concentration of a diffusing species in a membrane is fairly 
general and could be adapted to many different situations. We shall introduce 
other types of interactions between Q and M as demanded by the experi- 
mental evidence. 

We postulated the existence of at least one type of membrane molecule 
M, that participates in development of ionic diffusion across the membrane. 
Two types of roles may be postulated for M. One may visualize that the 
molecule may literally participate in transport by "carrying" specific 
molecular groups from one side of the membrane to the other. Alternatively, 
the molecules may act as specific receptors for specific ions that diffuse 
across the membrane. In this latter case, the molecule M itself does not 
move. Instead it may participate alone or in company of other M molecules 
in the formation of a suitable molecular lattice. Diffusion may take place 
by movement of ions from one lattice position to the next and at the interface 
between a membrane lattice site and another lattice site in a suitable adjacent 
medium, e.g., water. We shall choose to explore the second alternative: 
one in which the membrane molecules themselves do not move. Instead 
they form a more or less regular, and possibly highly organized, localized 
lattice. 



Ionic Diffusion in Membranes. I 333 

Integration of the Electrodiffusion Equation 
Eq. (9) gives a method of calculating the boundary values of C appearing 

in Eqs. (1) and (3). To integrate the electrodiffusion Eq. (1) across the mem- 
brane, some approximations are usually introduced, as shown in Cole (1968), 
the most  usual one being the constant field assumption. The result for a 
single ion is the following: 

C 0 - C l e zFE~/RT ] 
I=zZF2U~[ i ~  "J (10) 

where E,,=A o and l is the membrane thickness; Co and Cg represent the 
ionic concentrations at the inside surfaces for x = 0  and x=l, respectively. 
These values are obtained f rom Eq. (9) in which Cew 0 and Cewz are inserted, 
representing the ionic concentration in the aqueous medium for x <0  and 
x > I. For  example, if M is a membrane bond water molecule, n = 1, K-~ 1.0 
and the values of Co and C~ are given by 

CMT 
CQIM =~w-w COw 

where C u r  is the concentration of bound water in the membrane.  This 
would represent diffusion through water filled pores. In all cases where 
n =  1 and Cw/K~Cow>> 1, the values of Co and Cz are directly proport ional  
to Cow o and Cow ~. In other cases, Eq. (10) becomes more complicated. 

There will be cases where Eq. (10) is not valid. If the concentrations Co 
and C1 both reach their saturation value, C~T, the chemical potential is not  
taken into account any more. In such cases it is necessary to integrate 
Eq. (1) without the constant field assumption and obtain an expression 
for the conductance (Cole, 1968). 

A/I 
I=g (~ff-+ Ao) (11) 

l ~ dx 
g-l=z-W~ CU 

where I is the membrane current per unit  of surface and g is the membrane 
conductance per unit of surface. To evaluate g it is necessary to determine 
the profile of C. In cases where C has reached its saturation value, the 
profile is horizontal inside the membrane and discontinuities appear at the 
boundaries. Such conditions make the calculation of g rather easy: 

Z 2 F 2 C U  

g - I 0 2 )  

23 3, Membrane  Biol. 6 
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This calculation can be used as a valid approximation if C is always much 
less than either of the ionic concentrations, Cewo and Cart,. This will 
happen if there are very few molecules M in the membrane, meaning that 

CMr ~Cowo and Caw,. 

Polarization Effect of the Electrical Field 

Besides producing a current, an electrical field may also act on the 
molecules of the membrane by polarizing them; that is, by changing their 
orientation. We expect that in an electrical field, due to changed orientation, 
the equilibrium constants K, characterized by free energy AFc, [Eq. (5)] 
will be modified, as well as the mobility characterized by the lattice barrier 
energy AFd [Eq. (2)]. Not having detailed knowledge about the actual 
physical properties of the membrane molecules M, we shall formally assume 
that these variations are, in first approximations, proportional to the mem- 
brane potential E~, so that 

AFc,(Em)= AFc, +o~, FEm + ... (13) 

AFd(E,,) = AFa + an FE~ +... (14) 

where AF~,=AE~,-TAS~, and AFd=AEd-TASa. The values of AEc, and 
AEa are determined experimentally from the temperature dependence of 
ionic flows; the entropies A Sa and A Sc ~ and the coefficients a~ i and c~ a can 
be gained from data at various values of applied potential on the membrane. 

With these additional specifications, Eq. (10) becomes more strongly 
dependent on the membrane potential. Eq. (12) acquires a potential depend- 
ence it did not have before. The fact that K~ can be changed, brings the 
possibility for C to vary from its saturation point to lower values, meaning 
that neither Eq. (10) nor (12) is really valid. In such situations it seems 
more appropriate to use Eq. (12) and introduce average values for Caw 
in Eq. (9). This approximation removes the potential dependent profile of C 
but keeps the voltage dependence of the conductance. When using Eq. (10), 
the chemical gradient would disappear when K~ is such that Co and C, 
are equal. It must be realized that both calculations of the membrane 
current have their range of validity and should be used according to experi- 
mental conditions. It should be expected that any analytical formulation of 
the electrodiffusion problem is valid only for special eases because there is 
no general formulation available. 

Application to Steady State Current Voltage Relationships Measured 
on the Squid Axon 

The lattice diffusion model described above may have applications to 
various membrane flow phenomena. We shall make an application here 
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to the voltage current relationships in the squid axon. There are extensive 
and precise data available on currents caused by specific ions beginning 
with the development of the voltage clamp by Cole (1949) and from the 
detailed investigations of Hodgkin and Huxley (1952a-d). They found that 
the currents were mostly produced by sodium and potassium ions; and 
that these two currents were essentially independent of one another. Since 
then, it has been repeatedly suggested that separate channels are available 
in the membrane for the two kinds of ions. Each current could be described 
by the following expressions: 

I K = gK(E n +E,,), (15) 

[Na = gNa (ENa "[-Em) (16) 

where gK and gNa are the potassium and sodium conductances of the mem- 
brane, E,, the electrical potential differences across the membrane, and 
EK and ENa the chemical potential differences of the potassium and sodium 
ions. 

R T  
ENa = - - ~  in CNa wo/CNa W l 

R T  
E K = ~ - -  In C K wo/CK W l 

where subscript 0 stands for outside of the axon and l for the inside. 

In the usual notation, when the membrane is at rest, the membrane 
potential is actually about - 6 0  mv = Erost. In this paper the resting potential 
Er = + 60 mv and is equal to the membrane potential Em when the applied 
electrical potential V is zero. Generally E,, =Er - V, where V is positive for 
a depolarization. This is why Eqs. (14) and (15) do not have the usual form. 

In accordance with these experimental results, we decided to use Eqs. 
(11) and (12) to calculate the membrane ionic currents. It seems justified 
to suppose that C u r  is much smaller than the surrounding ionic concentra- 
tions. This is supported by the experiments with the drug tetrodotoxin 
(TTX) whose effects are obtained with concentrations as low as 10 -9 M. 
Also from a primary analysis of the potassium conductance measured with 
increasing external potassium ion concentration by Ehrenstein and Gilbert 
(1966), it seems that the conductance maximum amplitude is independent 
of the potassium ion concentration. This supports the condition, that C u r  

is much smaller than Cow; it will be seen later that our calculation of CMT 

is in accordance with this initial approximation. 

23* 
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Steady State Calculation of the Conductances 

The model proposed above has many parameters and their values will 
be determined by the experimental data. To give an explicit formulation for 
the conductances, it is necessary to evaluate numerically the mobility U 
and the concentration C. 

The mobility is given by Eq. (2). Some of the parameters can be given 
on approximate value: v~--10~2-1013 cps, d ~ 5 - 1 0 ~ ,  T=280 ~ There 
remains only AFd(E,,); it can be calculated from Eq. (14) in which there 
are two parameters AFn and aa; the first one can be estimated from the 
temperature dependence of the steady amplitude of the conductances. It 
was found by Hodgkin, Huxley and Katz (1952) to have a Q~0--< 1.5. This 
gives an upper value of 7.5 kcal to AFd and the mobility at Em =0 is approxi- 
mately zFU "~ 10- ~ cm2/v-sec. 

There remains only ~d. Experiments on the squid axon have shown that 
the eonductances of the membrane become nearly independent of the 
membrane potential when the applied potential V is such that the axon is 
highly depolarized. In order to obtain agreement with this it was necessary 
that the coefficient ad is so small that it can be neglected. This means that 
the potential barrier to lattice diffusion is a constant; it is not modified 
by the membrane potential. This is also supported by the fact that the 
instantaneous change of current with voltage is linear in the squid axon. If 
the mobility was voltage dependent, we should observe a non-linear relation 
between the instantaneous current and the membrane potential, because the 
kinetics of the polarization effect of the electric field are usually quite rapid 
in liquids (10-6 sec or less). It is not denied here that the mobility cannot, 
in general, be modified by the membrane potential; but it does not seem so 
here, according to the equations that we have established and the data we 
have chosen. 

The calculation of C is obtained from Eq. (9). It is necessary to decide 
the value of n. In a previous work (Roy, 1969), it was thought that n =4 
was a reasonable value. Since then it was found that n = 2, was the minimum 
value in order to have a satisfying fit with the Hodgkin and Huxley (1952) 
data. Eq. (9) becomes, 

CMT (17) 
CQzM- 1 + Cw/K 2 CQw + C~v/K2 K~ C~w 

where Cew is obtained from the average ionic concentration in the water 
phases surrounding the membrane; K~ and Kz are given by Eq. (7) and 
AFt(E,,) is given by Eq. (13). The value of CMT is estimated from the 



Ionic Diffusion in Membranes. I 337 

maximum amplitude of g ~- 30 mmho/cm 2 

z2 f 2 

gmax = I --  CMT U 

with z = 1, l=  10-6 cm, zFU= 10-5 cm2/v_sec, it gives C M T  ~ 30 gmoles/liter. 

There remains C~cl and ~c2, AFcl and AFt2 which will be determined 
from the curve fitting of the voltage dependent conductances. 

The amplitudes of the potassium and sodium conductances are given 
by the following expressions, 

F 2 C~:2 M UK 
gK- 1 

Using Eq. (17) for CK 2 g and Eq. (2) for UK, and after the potential depend- 
ence of K1 and K2 have been introduced with Eq. (13), g~ becomes 

gK-- gmK (18) 
( Cw )2 exp[(oqr~+CC2K)FEm/RT] 

Cwexp(~ FE'/RT) ~- ~KW KloKK2oK 

where 

1-+ 
CK w K2or~ 

F 2 d 2 v CMT K e -AFaK/RT 

g'~ = 1RT 
Klo K -~-- e-AFclK/RT 

K2 o K ~- e - A Fc2 K/R T . 

Using the same equations with the index Na instead of K, 

F2 CNa 2M UNa 
gNa - -  d 

gNa --  gm Na 

(19) 

(20) 

where 

1+ C w exp (0~ 2 Na FEm/R T) 
CNa W K2o Na 

( Cw ~2 exp ['(~,Na'-l-~2Na)FEm/RT] 
\ GNAW/~ K10Na K20Na 

FZ d2 v CMrNa e - AFaNMRT 

gmNa -- R T1  

K I  O Na=e-AFcj.  Na/RT 

K 2 0  Na ~ e-AFe2 Na/RT 

(21) 

C,:w and Cya w are the average concentrations. 

The data of Hodgkin and Huxley (1952d, pp. 508 and 514) is compared 
with the calculated conductances, given by Eqs. (18) and (20). The results 
are very satisfactory, as seen on Fig. 1 a and b. 
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Fig. 1 a and b. Amplitudes of the potassium (a) and sodium (b) conductances vs. the applied 
potential. �9 Data taken from Hodgkin and Huxley (1952d). Continuous curve calculated 

from Eq. (18) in (a) and Eq. (20) in (b). Vertical logarithmic scale 

Table 1. Values of the parameters obtained by fitting the steady state equations to the 
Hodgkin and Huxley (1952d) data 

l Na + K + 

~:~ Kio ,~F~, ~ Klo aF~t 

1 5.1 9.0x 104 -6 .4  kcal 3.9 1.7 x 105 -6 .7  kcal 
2 1.4 8.7x 102 -3 .8  kcal 0.86 3.6x 102 -3 .3  kcal 

C w = 55 moles/liter. CNaW = CKW =0.25 moles/liter. 

The curve fitting procedure has given values to the parameters ~ t and 
Kzo; they are all recorded in Table 1, with the values of AFc t calculated 

from Ks o- 
A first observation to be made is the value of AFc~: it is negative, 

meaning that the interaction between Q W  and M has a high tendancy to 
be performed toward making QM. The equilibrium constant is large; the 
ions Q have much more affinity for the molecules M than for water when 
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the membrane potential is zero. The reason that there is a small concentra- 
tion of QM is that the concentration of molecules M is small. This high 
affinity of Q for some membrane components might seem curious especially 
for ions, because the membrane is supposed to be made of hydrophobic 
components. But it must be remembered that proteins have hydrophobic 
and hydrophilic regions and some parts of the proteins could have high 
dipole moments. 

Kinetic Equations for the Conductances 

Since the only potential dependent factors appearing in Eqs. (18) and (20) 
are those related to the interaction between the ions and the membrane 
molecules M, the kinetics of the conductances will be given by that of C~ 2 M. 

The fundamental equations of the chemical kinetic theory (Glasstone, 
Laidler & Eyring, 1941), will describe these time dependent changes. To 
calculate the rate of formation of the products from the reactants, it is 
supposed that an activated complex is formed and then this activated complex 
is transformed into the products. The concentration of the activated complex 
is calculated on the basis of the equilibrium theory, using an activated com- 
plex equilibrium constant K*, which is dependent on the free energy change 
between the reactants and the activated complex and can be calculated in 
principle if the partition functions of the components are known. The rate 
of formation of the products is given by the rate of dissociation of that 
activated complex; the latter is calculated from the frequency of vibration v 
of the particle in the activated complex, where v =k T/h, k is the Boltzmann 
constant and h is Planck's constant. The rate of formation and dissociation 
of the products are, 

kT , 
Rij = ~ KIj (22) 

w h e r e l = l  o r 2 a n d j = l  or 2. 

When it is not possible to calculate in detail the value of K~, it is the 
usual practice to express it in the same form as an ordinary equilibrium 
constant, 

K ,  -de, Ij ~ e I j /RT  

, , , (23) 
AFs AEclj- TASclj 

where AF*~j is the change in free energy between the substrates and the 
activated complex; AE*tj is the activation energy and AS*~j is the activation 
entropy. 
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The ratio of the rate constants for forward and backward reaction 
gives the equilibrium constant. Since the latter is potential dependent,  as 
introduced with Eq. (13), it is expected that  AF*~j is also potential dependent 
in a similar approximate manner  

A F~ lj (E,n) = A F~ lj + ~c lj FE,,, 

and and 
R k T  , e_~.UFEm/R T lj = ~ Ko" o (24) 

K ~  o = e -  a t ;  , /R r 

k T  (25) 
Rljo-- ~ K~o. 

F rom the equilibrium constants K1 and K2 already determined in the steady 
state treatment, a relation between % z a n d  * aczi is established as 

�9 * (26)  O~cl~cll  --~c12 , 

and a relation between K~ o and K~ o is established as 

Kz o = Kno/Kl* "2o. (27) 

The stochiometric equations are 

Q W + M  Rll Q1M+ W 
R12 

Q ~ M + Q W  R2, Q 2 M +  W. 
R22 

The kinetic equations are" 

dC(21M CQw CM 
dt  -Rii C w 

dCQ 2M -R21 CQwCQ 1M 
dt  C w 

-C~ (28) CQIM R12+R2i CI, v ] +R22CQ2M'  

R22 Ca2~. (29)  

And since the availability of M is limited, we have 

CMT = CM- t- CQ1M'J- CQ 2 M �9 

Solving for C o 2 M 

d 2 CQ2 M q_2 ~] dCo 2M 
dt 2 d t  -[-032 CQ2M=fD2 CQ2M~ 

(30) 

(31) 



Ionic Diffusion in Membranes. I 341 

where 

27 =R12 +R22 + ~ - w  (RI~ +R20 (32) 

C~w - R o ~~ + R 2 1 R l l ~  - ~  12 ~,22 (33) 

CMr (34) 
CQ2M~-- R22C w R12 R22 C2w -" 

R21 Cow [- Rll R21 C~V + 1 

Eq. (34) is the same as the steady state Eq. (17) if 

R21 Rll 
K 2 =R-~-22 and K 1 -  R12 

The rate constants Rzj are given by Eq. (24) as functions of the potential Era. 

The solution of Eq. (31) is not oscillatory if 72 >~o 2. 

In that case, the solution is a sum of two exponentials and the steady 

state term: 
Co2M=Ae-7~t + Be-~zt +ca2Moo 

Y~, 2 =7 + (72-- c~ ~. 

The constants A and B are determined from the initial value C o 2 M 0 and 

the initial rate of increase of C o 2 M which is taken to be zero. The final 
result becomes 

CQ2M=CQ2Mo ~ _(CQ2!4/Im _ CQ2MO) (_71 
e-y2t_~2 e-~lt 

(35) 
71 --72 / " 

It should be noted that the initial rate is not always zero, particularly when 
the membrane is returned from a depolarized state to its resting state. In 
that case, the initial rate could be large; it can be calculated from Eq. (29) 
in which the rates R~j change instantaneously. 

Eq. (35) can now be compared with the data on the kinetics of the gK 
conductances, because gK is directly proportional to CK 2 u (Q is replaced 

by K). Hodgkin and Huxley (1952d) give a family of curves for gK; each is 
a function of time and applied potential. When Eq. (35) is compared with 
these curves, values are obtained for the parameters. As seen on Fig. 2a the 
fit is very good; Fig. 3a gives the applied potential dependence of 7~ and 72. 
The value of the constants are given in Table 2. It should be mentioned 
here that it would have been impossible to reproduce the initial delayed rise 
in gK with only a first-order differential equation. This is a justification for 
the introduction of two sequential interactions between Q and M. 
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Fig. 3 a and b. Applied potential dependence of the rate constants appearing in Eq. (35) 
(a) for the potassium conductance and (b) for the sodium conductance 
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Table 2. Values of the parameters obtained by fitting the kinetic equations to the Hodgkin 
and Huxley (1952 d) data 

l j Na + K + 

(see -1) (kcal) 

1 1 1.0 2.2x 103 12.1 0.63 2.8x 102 13.3 
1 2 --4.1 2.6x 10 -2 18.5 --3.3 1.6x 10 -3 20.0 
2 1 0.7 3.2x 102 13.2 0.54 3.7x 101 14.4 
2 2 --0.67 4.0x 10 -1 17.0 --0.32 1.0x 10 -1 17.7 
3 1 0.34 1.8x 102 13.5 -- -- -- 
3 2 --3.06 3 . 5 x  10 -4  21.0 -- -- - -  

CKw = CN, w =0.25 moles/liter. Cxw =0.25 moles/liter. C w = 55 moles/liter. 

Inactivation of the Conductances 

Although Eq. (35) can fit the gK curves very well, it cannot reproduce 

the gN, curves. The sodium conductance has only a transitory increase 

when an external voltage is applied and it returns to its resting value (or 

almost) even when the potential is maintained. This phenomena has been 

called inactivation of gN,. 

The problem of the inactivation of the sodium conductance is still an 

unresolved question experimentally. Of course, mechanisms can be proposed, 

but they remain hypothetical until more experimental data is available. A 

hypothesis will be introduced to show that this theory can explain the sodium 

conductance data. It must be remembered that the proposed mechanisms 

for inactivation could be wrong without necessarily invalidating the basis 

of the whole theory. We would like to propose two possible mechanisms of 

inactivation which give similar theoretical formulations. 

It is possible that the complex Na2 M has two configurations, or two 

allosteric states as it is usually called now. In one state the free energy of 

diffusion AFe is small so that Na + can jump from one M to the other. In the 

other state the value of AFd is much larger and Na + is retained in M more 

strongly, so that almost no diffusion occurs. 

The second possibility is that the complex N a M  could be involved in a 
second interaction with another ion. It was not specified how many different 

types of molecules Q could interact with M. It was mentioned before that 

the calculation of the interaction between Q and M was very simplified and 

could be much more complicated, especially if there are many types of 

diffusing molecules available outside the membrane. There could be competi- 
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tion for the molecules M or inhibition of QM by another ion or molecule. 

In the case of the sodium ions, it seems that there could be an inhibition 
of N a 2 M  by another ion X. The ion X can displace Na and remove it from 

the membrane or it could form another component NaXM which binds 
the ion Na much more strongly, thus preventing its diffusion across the 

membrane. The ion X can be called an inhibitor. We will introduce equa- 
tions for that last mechanism; they can be transformed easily to represent 

other types of interactions. 

N a W + M  R, ,  Na lM +W 
R12 

N a l M + N a W  R2, N a 2 M + W  (36) 
"R22 

Na2M+X W 3, . Na2XM+W. 
R32 

The kinetic equations are 

dCNalM =R11 CNaW CM 
dt Cw 

C N a l M ( R 1 2 q - R 2 1 ~ ) + R 2 2 C N a 2 M  

d CNa 2 M CNa W 
dt =R21 CNalM C W CNa2M (R22"}-R31~w)q'-R32CNa2XM 

dCNa 2 XM 
dt 

Cxw 
=R31 CNa2M -'W-----R32 CNa2X M 

~ w  

and the total concentration of M is 

CMT = CM -{- CNalM "3v CNa 2 M + CNa 2 XM" 

(37) 

(38) 

(39) 

(40) 

The above equations can be used with little modification to represent 

the first proposed mechanism of inactivation. Instead of Na2 M interacting 

with X, it will be 
Na2 Ml~ R3~>Na2 Mlk (41) 

R32 

Where M I and M H represent the two allosteric states of M. The symbol 

for the concentrations can be replaced in such a way that CNa 2 M becomes 
CN, z ~  and C~,2xM becomes CN, 2MI~. Since there are zero X W a n d  zero W 
involved in the third reaction C ~ w = 1 and COw = 1 in Eq. (39). All the calcula- 
tions can be made using Eqs. (37) to (40); the results can be easily transformed 
to satisfy the hypothesis of the allosteric mechanism if it is found to be the 

right one. 
Eqs. (37) to (40) could be solved for CN, z ~t. It would give a third-order 

linear differential equation and the time constants will be obtained by solving 
a cubic polynomial. Such a solution is rather complicated mathematically. 
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Because the experimental data do not  show any oscillatory behavior, the 
calculation of CN, 2M can be approximated in the following way. It is 
supposed that at the beginning of the interactions, only C~, 2 ~t increases 
and CNa 2 x~ has a negligible increase; when CN, 2 X~ becomes important,  
CNa 2 M is not increasing appreciably any more. It means that  the interactions 
between Na and M, and Na2 M and X go on almost independently of one 
another. With this approximation, the calculation of CNa2M is greatly 
simplified. To do this, an intermediate concentration C~a 2 M is introduced; 
this is the concentration of CNa 2 M if there were no inactivation. 

Eq. (38) becomes 

dC~a2M 
dt 

and Eq. (40) becomes 

= R21 CNa 1M CNa~W -- R22 C~qa 2 M (42) 
Cw 

CMT = C M -t- CNa 1M -~- CNa 2 M (43) 

and 

Cxw 
dCNa2Mdt - R 3 2  CNa2XM--R31 CNa2�9 ~ C W 

C~qa 2 M ~--" CNa 2 XM "~ CNa 2 M" 

Introducing Eq. (45) into Eq. (44), gives 

d CNa 2 ~t Cxw , 
+CNa2 R32 q-R31 -~ -W]  =R32 CNaZM" (46) dt M 

Eq. (46) is transformed into a non-dimensional form by introducing the 
ratio 

CNaZM - h .  
C;~.2 M 

This formulat ion corresponds to the inactivation factor h introduced by 
Hodgkin and Huxley (1952c) 

d h ~ Cxw 
d---i -+h \R32+R31 Cw ]=R32. (47) 

For  constant potentials Em the solution is simple 

h = h ~ - ( h  -ho) e -y~t (48) 

(44) 

(45) 

and Eq. (37) stays the same, except that CN, 2 u becomes Clqa 2 M" 

The three equations are solved to give Cs z M(t). The solution is given 
by Eq. (35) when E,, is constant. Then the real CNa 2 M is calculated taking 
into account the inactivation 
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where 
1 

h~ - 1 + K 3 Cxw/C w (49) 

K3 =R31/R32 

and ho is the initial value of h obtained from Eq. (49) where K3 is calculated 
before the potential is applied. 

Cxw (50) 73=R3z+R3t Cw 

The value of CN, 2 ~ is given by the product, 

CNa2M=hCh, a2M (51) 

where both h and C~, 2 M are time and potential dependent. The rate con- 
stants R31 and R32 have the same type of potential dependence as the one 
given by Eq. (24). With this result, the calculated CNa 2 M can be compared 
with gNa and values can be obtained for the unknown parameters. 

The procedure is more complicated than in the case of the potassium 
conductance kinetics. First, the inactivation factor h is fitted with the data 
on inactivation in Hodgkin and Huxley (1952c); that determines the values 
Of * * * * g ~ 2 o ,  * K31o, ~c31 and c~*3z. The ratio K31o/K32o and the difference 
ec31- ~c32 are determined from the steady state data on inactivation and 
the absolute values are determined from the kinetic data on inactivation. 
Fig. 4a and b give h o~ vs. V, the applied potential, and 73 vs. V. With the 
values of the steady state constant of C~, a M~ taken from Table 1, it leaves 
only four parameters to be determined from the fitting of CNa 2 M with the 
kinetic data on gnu. The results giving the calculated curves and the experi- 
mental points are shown on Fig. 2b. Fig. 3b gives the applied potential 
dependence of 71 and 72. The values of the parameters are given in Table 2. 

The calculated values of AF~*~j contain the activation energy, AE*~j and 
the entropy A S~*zj. If the temperature dependence of the kinetics is measured 
for a set of voltage steps, it is possible to calculate the values of AF*~ for each 
temperature and from their temperature dependence, we can calculate the 
entropy change AS~*~j and the barrier energy AE*~j. An approximate cor- 
respondanee can already be found between the calculated AF*~j and the 
average Q~o measured by Hodgkin, Huxley and Katz (1952). They found 
that the rate of change of the conductances has a Q~0 between 2.7 and 3.5. 
If the entropy AS* is small compared to the energy AE*, we find from 
Table 2 that many of the values would give Ql0's corresponding to the 
measured ones. 
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Fig. 4a and b. Applied potential dependence of inactivation. (a) Steady state amplitude 
of inactivation (vertical logarithmic scale); (b) rate of inactivation, o Data taken from 

Hodgkin and Huxley (1952c) 

But it must be realized that more accurate measurements of the temper- 
ature dependence of the conductance kinetics are needed in order to deter- 
mine the activation energies and the entropies. Such experiments are 
actually under way in our laboratory. 

With all the equations describing the conductances, it is now possible 
to calculate an action potential to test their validity. The cable equation 
used in Hodgkin and Huxley (1952d) can be introduced for such a purpose. 

d2V 
We will calculate the space-clamped action potential where -~-x~-=0: 

dV 
c~ -dT- = gK (vK- v-)+ g~o(V~a-- V) + g~(r/L-- V), 

where C,~ is the membrane capacitance; gL is a constant leakage conductance, 

VL the leakage potential and VK=EK+Er, VNa=ENa+Er. With the time 
and potential dependence of gK and gN,, V(t) is obtained through a numerical 
integration. The space-clamped action potential so obtained is shown on 
Fig. 5, and it is compared with a measured action potential. There is a 
small difference in shape, mostly at the bottom part, where the calculated 
action potential returns more slowly than the measured one. It has all the 
well known properties of experimental action potentials, like threshold and 

2 4  J .  M e m b r a n e  Bio l .  6 
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Fig. 5. Calculated (1) and measured (2) space-clamped action potential. Data taken 
from Hodgkin and Huxley (1952d) 

refractory period. It is now well admitted that most properties of axons 
can be reproduced from the voltage-clamp data. It is not necessary to 
demonstrate that the action potential calculated with this theory has all 
the required properties, because the voltage clamp data is reproduced 
quite satisfactorily. 

C o n c l u s i o n  

The purpose of this work is to describe the electrical conductivity 
properties of membranes. We have introduced some basic concepts and 
given fundamental relationships that can be used to calculate diffusion of 
ions across membranes. The membrane is a heterogeneous structure and 
diffusion across it depends very much on the affinity of the diffusing mole- 
cules for certain membrane molecules. The concentration of diffusing 
molecules that can be present in the membrane is a factor of primary 
importance to determine the flow across the membrane. The mechanism 
of diffusion is based on the theory of diffusion in solids and liquids; molecules 
and ions diffuse through a medium by jumping from one lattice site to an- 
other. Introducing the fact that the electric field on the membrane can 
change the binding properties of the membrane molecules, potential 
dependent boundary conditions are obtained and introduced into the 
electrodiffusion equation. Potential dependent conductances are also calcu- 
lated. 
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The interaction of ions with membrane molecules can be calculated with 

the chemical kinetic theory; this gives the time dependent changes of the 

conductances. The theoretical calculations are compared with the Hodgkin 
and Huxley (1952d) data and the results are quite satisfying. The unknown 
parameters are determined by curve fitting. Among them are the activation 
energies which were found to be in agreement with the temperature measure- 

ments. Also an action potential is calculated using the cable theory and it 

compares closely with the experimental one. 

A recent paper by Tsien and Noble (1969) is suggesting an approach 

similar to the one we have introduced; they suggest that the transition state 

theory could be a fairly general approach to the study of membrane conduct- 

ance kinetics. The wide variation in the rate coefficients of different types of 

membranes is always followed by similar variation in the Q~o. Although 

it is an interesting support for this approach, it must be remembered that 
close quantitative comparisons could present difficulties, especially regarding 

the values of the entropy of activation. Nevertheless, the transition state 
theory is quite general and flexible, and it would be surprising that additional 

refinements combined with a general theory of diffusion could not take 

care of most of the problems. Of course more knowledge of the membrane 

structure is needed before most of the experimental details are explained. 

It is hoped that this theoretical analysis will provide a useful basis to 

calculate the flow of other types of ions or molecules in membranes and also 

that the equations developed for the squid axon membrane will stimulate 

experiments to check if this model is valid. Experiments are now being 
conducted to find additional supports for the hypothesis introduced into 

this model. 
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